Because of high strength stainless steel’s excellent matching and corrosion resistance, strong toughness in aerospace, it is widely usded in the field of national economy and people's livelihood application like marine engineering ,energy equipment manufacturing, such as the plane of the main bearing components, fasteners, [TJC STEEL]satellite gyroscope, ship shell, offshore oil platform, automobile industry, nuclear industry, gear and bearing manufacturing, etc., It is the preferred material for lightweight design, energy saving and emission reduction of future equipment components. As one of the important candidate materials for load-bearing and corrosion-resistant structural parts, how to combine ultra-high strength and toughness with excellent service safety is the key development direction of this kind of steel in the future.
Development History: Carnegie Illionois developed the first generation of martensitic precipitation-hardened stainless steel in 1946 to meet the needs of high performance corrosion resistant structural steels for aerospace and Marine engineering. On the basis of Stainless W steel alloy system, Cu and Nb elements were added and Al and Ti elements were removed. American Arm‐ CO Steel Company developed 17-4pH steel in 1948 [4]. Due to its good strength, toughness and corrosion resistance, it is widely used in manufacturing fasteners and engine parts besides landing gear components of F-15 aircraft, but its cold deformation ability is poor. In order to reduce the high temperature δ -ferrite which is unfavorable[TJC STEEL] to the transverse mechanical properties, a 15-5pH steel [5-7] was developed by reducing the content of Cr and increasing the content of Ni. This steel overcomes the disadvantage of 17-4pH steel in transverse plasticity and toughness, and has been used in the manufacturing of ship and civil aircraft bearing parts. In the early 1960s, Inco invented martensitic aging steel and introduced the concept of martensitic aging strengthening for the development of high strength stainless steel, thus opening the curtain of the development of martensitic aging stainless steel. In 1961, the American company first developed the maraging stainless steel Custom450 containing Mo. Later, Pyromet X-15 and Pyromet X-12 were developed in 1967 and 1973 respectively. During this period, the United States has also developed AM363, In736, PH13-8MO, Unimar CR, etc. Martin et al. [8,9] obtained the invention patents of Custom465 and Custom475 steel in 1997 and 2003 respectively, and applied them in civil aviation aircraft. British developed FV448, 520, 520(B), 520(S) and other high strength stainless steel brands. Germany developed the Ultrafort401 and 402 in 1967 and 1971. In addition to copying and improving American steel grades, the Former Soviet Union independently researched a series of new steel grades. In 2002, QuesTek undertook the pollution prevention project of THE STRATEGIC Environmental Research and Development Program (SERDP) of the U.S. Department of Defense. Through the Material Genome Project, QuesTek designed and developed Ferrium®S53, a new type of ultra-high strength stainless steel for aircraft landing gear [10], and published [TJC STEEL]the AMS5922 aerospace standard at the end of 2008. Ferrium®S53 has A strength of about 1,930mpa and fracture toughness (KIC) of 55 MPa·m1/2 or more. It has been added into the MMPDS trunk Material Manual of the United States in 2017, and has been successfully applied to THE A-10 fighter aircraft and T-38 aircraft of the United States. It is the preferred material for the landing gear of the next generation of carrier-based aircraft. China began to develop high strength stainless steel in the 1970s. In 2002, CIRON and Steel Research Institute designed and developed a new type of ultra-high strength and toughness stainless steel material, which is the ultra-high strength stainless steel USS122G of Cr-Ni-Co-Mo alloy system independently developed by China with independent intellectual property rights. Its strength is more than 1900 MPa and KIC is more than 90 MPa·m1/2 [12]. At present, the material has broken through the key technology related to the preparation of bar with a diameter of 300 mm, and has a wide application prospect in the field of Aerospace equipment manufacturing in China. Stress Corrosion Cracking of Ultra High Strength Stainless Steel: According to the failure investigation report of Aircraft parts in The United States, stress corrosion cracking is one of the main forms of [TJC STEEL]sudden failure accidents occurred in the service of key load-bearing parts of aircraft, and most landing gear is finally broken due to stress corrosion or fatigue crack propagation [61]. At present, stress corrosion occurs not only in aviation, aerospace, energy, chemical and other high-tech industries, but also in almost all commonly used corrosion resistant steel and metal. Therefore, it is of great scientific value and practical significance to analyze the stress corrosion cracking mechanism of ultra-high strength steel and the factors affecting the stress corrosion of ultra-high strength steel. The corrosion resistance of materials becomes an important factor to limit the stress corrosion cracking of high strength steel, and pitting corrosion is the most common and harmful form of corrosion. Most stress corrosion cracking [TJC STEEL]originated from pitting pits. In the process of aging treatment, the microstructure of ultra-high strength stainless steel is not uniform due to the precipitated phase from supersaturated martensite matrix, which is the main source of pitting corrosion of ultra-high strength stainless steel. The passivation film near the precipitated phase is weak, and the invasion of Cl- leads to the destruction of the passivation film, and the formation of microbatteries between the precipitated phase and the matrix, so that the matrix is dissolved, the precipitated phase spares off, and pitting corrosion is formed. For example, cr-rich carbides M23C6 and M6C and intermetallic compounds Laves phase equal σ are prone to form cr-poor zone around, resulting in pitting phenomenon. Luo et al. [62] and Yu Qiang [63] studied the effect of aging time on the microstructure and electrochemical behavior of 15-5pH ultra-high strength stainless steel by using THREE-DIMENSIONAL atomic probe chromatography. Cu-rich clusters and (Cu,Nb) nanoparticles were observed when aging time was 1-240 min. After long-term aging treatment, the sample surface is more susceptible to Cl- erosion. After aging for 240 min, The Cr content around the [TJC STEEL]precipitates also decreased, and Cr poor zone was easily formed in these parts. The decrease of Cr/Fe ratio in passivated film leads to the decline of pitting resistance of passivated film. In addition, the continuous precipitation of Cr-rich carbides at grain boundaries reduces the intergranular corrosion resistance of steel. For example, the study [64] found that AISI 316Ti stainless steel has higher intergranular corrosion resistance than AISI 321 stainless steel, because the precipitation of Ti C reduces the formation of Cr-rich carbides, which is one of the precipitates leading to intergranular corrosion. As the most important ductile phase in high strength stainless steel, the content, morphology, size and stability of austenite also affect the stress corrosion sensitivity of steel. Under the condition of the same size, morphology and stability, the stress corrosion cracking threshold value (KISCC) increases with the increase of austenite content, and the stress corrosion cracking sensitivity of steel decreases. The reason is that the thin-film austenite structure formed on the martensitic slat boundary improves the toughness of steel and reduces the hydrogen-induced crack growth rate. There are two main reasons for the decrease of crack growth rate. One is: When the crack expands from martensitic matrix to thin-film austenite, either it continues to expand into the austenite or changes the direction of propagation to bypass the austenite structure, it will consume more energy, resulting in the decrease of crack growth rate and the increase of stress corrosion resistance sensitivity. Second: as I mentioned earlier, H in austenitic organization have higher solid solubility, low [TJC STEEL]partial tendency, and the rate of diffusion of H in austenite is far smaller than in the martensite structure, is beneficial in high strength stainless steel hydrogen trap, results in the decrease of hydrogen embrittlement sensitivity of the crack front, the crack propagation rate reduce, improve the stress corrosion sensitivity. It should be noted that the stability of austenite is also a key parameter determining the stress corrosion sensitivity of steel. After the stress or strain-induced martensitic transformation, the fresh martensite transformed from austenite can not only suppress the crack propagation, but also improve the sensitivity of steel hydrogen embrittance as a new source of hydrogen diffusion. In conclusion, the strength and toughness, stress corrosion and hydrogen embrittlement sensitivity of steel are affected by the complex multistage and multiphase structure, and the design and preparation of ultra-high strength stainless steel with excellent service performance by traditional trial and error method is difficult, long cycle and high cost. Compared with the trial-and-error method, the rational design method, such as establishing a series of multi-scale analysis models of strength and toughness, stress corrosion properties and hydrogen brittleness, will be more purposeful. The results of simulation analysis can be used to establish the design standard of high strength stainless steel, optimize the morphology, size and content of precipitated phase, martensite and austenite structure in steel, and further combine the multi-scale simulation with the actual material development process, which will greatly reduce the difficulty of material development, reduce the cost and shorten the development cycle. Ultra High Strength Stainless’ Future Development: As a metal structure material with excellent strength, toughness and service safety, high strength stainless steel has a broad application prospect in aviation, aerospace, Marine engineering and nuclear industry. In view of the harsh [TJC STEEL]application environment of this kind of steel, the exploration of a new generation of high-strength stainless steel should not only focus on breaking the bottleneck of matching ultra-high strength and excellent plasticity and toughness, but also take into account the excellent service safety. In the process of alloy design and heat treatment process formulation, the traditional trial-and-error method is gradually transferred to thermal/dynamic assisted alloy design, artificial intelligence mechanical learning and other rational design methods, in order to greatly improve the research and development cycle of new high-strength corrosion resistant alloy and save the research and development cost. The mechanism of strengthening and toughening in high strength stainless steel is still to be further studied, especially the understanding of the precipitation behavior of the second phase and the superposition of the strengthening contribution value. The effect of austenite content, size, morphology and stability on the toughness[TJC STEEL] of high strength stainless steel has been studied extensively, but no effective mathematical model has been established to quantitatively estimate the contribution of austenite content, size, morphology and stability to the toughness of high strength stainless steel. In addition, it is urgent to solve the stress corrosion fracture mechanism and hydrogen embrittlement sensitivity of ultra-high [TJC STEEL]strength stainless steel under complex strengthening system, so as to provide a theoretical basis for the durability design of ultra-high strength stainless steel. High nitrogen steel is one kind of stainless steel whose nitrogen content exceeds the limit nitrogen content that can be achieved in steel under conventional conditions. According to the different amount of nitrogen added, the following classification is roughly made, that is, the steel with nitrogen content >1% is ultra-high [TJC STEEL]nitrogen, the steel with nitrogen content 0.3 ~ 0.5% is high nitrogen, and the steel with nitrogen content below this range is nitrogen. The effect of nitrogen in stainless steel is mainly reflected in three aspects: the microstructure, mechanical properties and corrosion resistance of stainless steel. The results show that nitrogen is a very strong element that forms and stabilizes austenite and enlarges the austenite phase region. It can replace part of nickel in stainless steel, reduce the ferrite content in steel, make austenite more stable, prevent the precipitation of harmful intermetallic phases, and even avoid the occurrence of martensite transformation under cold working conditions.
Used to think that nitrogen in steel will be brittle and must be processed to remove elements as, but during the period of 1910 ~ 1930 in nitrogen in steel can improve the strength of the research, and use it to improve the toughness, fatigue strength and corrosion resistance, such as performance, found that the addition of[TJC STEEL] nitrogen quantity the more the more the performance improving trend, so as to carry out the related research of the amount of the expanded to join. The biggest reason for interest in nitrogen is that it can substitute nickel. In the 1930s and 1940s, in order to save nickel from wartime supplies in Japan, nitrogen as a substitute for nickel to form austenite phase was paid [TJC STEEL]attention to. However, until now, how to improve the properties of steel by nitrogen solution and its mechanism are still unknown, which need to be solved urgently. Mechanical Properties of High Nitrogen Content Stainless Steel: With the increase of nitrogen element in stainless steel, the hardness, yield strength, tensile strength and fatigue resistance of stainless steel have been significantly improved. The introduction of nitrogen can effectively improve the strength of stainless steel and stabilize the austenite phase, which can be said to kill two birds with one stone. Especially the introduction of nitrogen can significantly improve the yield strength and tensile strength of alloy materials. Local Area Corrosion Resistance: There is no doubt that the introduction of nitrogen greatly improves the corrosion resistance of the material. This can be clearly [TJC STEEL]seen from The calculation formula of The Pitting resistance Equivalent number: Formula 1: PREN=%Cr+3.3%Mo+16%N According to the above formula, the pitting corrosion equivalent of stainless steel is mainly determined by the nitrogen content in stainless steel. Its calculation factor reaches 16. Nitrogen content also significantly[TJC STEEL] changed PREN values. This is just a calculation formula for the PREN value of nitrogenous stainless steel materials. In the high nitrogen stainless steel materials composed of different formulas, the calculation factor of nitrogen element even reaches more than 25. 321H stainless steel has good corrosion resistance, especially in oxidizing medium has good corrosion resistance. Because of its good heat resistance and oxidation resistance, it is more used as a heat resistant steel. Comparing with 321 Stainless steel, [TJC STEEL]321H has higher Carbon content and similar properties with 321 Stainless.
A. 321H Corresponding Brand: 1, GB GB-T standard: digital brand number: S32169, new brand number: 07Cr19Ni11Ti, old brand number: 1Cr18Ni11Ti; 2, American standard: ASTM standard: [TJC STEEL]S32109, UNS standard: 321H; 3, JIS standard: SUS321HTB; 4, DIN standard: 1.4940,1.4541; 5, European standard EN standard: "X8CrNiTI18-10, X7CrNiTI18-10; 6, NF standard: /; 7, British BS standard: 321S20. B. 321H Stainless Steel Chemical Composition: ⑴ carbon C: 0.04~0.10⑵ silicon Si: ≤0.75, [TJC STEEL]⑶ manganese Mn: ≤2.00, ⑷ phosphorus P: ≤0.030, ⑸ sulfur S: ≤0.030,[TJC STEEL] ⑹ chromium Cr: 17.00 ~ 20.00, ⑺ nickel Ni: 9.00 ~ 13.00, other elements: Ti≥4C~0.60. C. 321H Stainless Steel Physical Properties: Density Density (20℃) /kg/dm3:"8.03,, magnetism: none. D. 321H Stainless Steel Mechanical Properties: (1) Delivery status: solid solution treatment of bar, solid solution pickling of plate; ⑵ Tensile strength (RM/MPa) 520; ⑶ Elongation strength[TJC STEEL] (Rp0.2/MPa) : 205; ⑷ Elongation A/% : 40; ⑸ Area shrinkage (Z/%) : 50. E. 321H Stainless Steel Heat Treatment: 1. Hardness HBW≤ : solution 187, hardness HRB≤ : 90; 2. Heating temperature: 920~1150; 3. Heating method: fast cooling. 321H Stainless Steel’s Application: 321H Stainless Steel is [TJC STEEL]widely used for boiler superheater, heat exchanger, condenser, catalytic tube, cracking tube device and other steel tubes and fittings. GS-25CrNiMo4 alloy is one kind of special Cr-Ni-Mo Alloy which is suitable used under the environment with temperature up to 300℃[TJC STEEL].
Chemical Composition for GS-25CrNiMo4 Alloy: C(%):0.22-0.29 Si(%):0.30-0.60 Mn(%):0.60-1.00 P(%):Max 0.025 S(%):Max 0.025 Cr(%):0.80-1.20 Ni(%):0.80-1.20 [TJC STEEL] Mo(%):0.20-0.30 Mechanical Property for GS-25CrNiMo4 Alloy: Proof Strength Rp0.2(MPa):350-400 Tensile Strength Rm(MPa):650-850 Impact Energy KV(J):24 Elongation at Fracture A(%):21 Reduction in Cross [TJC STEEL]section on Fracture Z(%):43 As-Heat-Treated Conditions:Solution and Aging,Annealing,Ausaging,Q+T,etc Brinell Hardness(HBW):442 For Moe Infos about GS-25CrNiMo4, pls feel free to contact us. I. Introduction of 12Ni14 Nickel Alloy Plate
12Ni14 is a boiler pressure vessel steel plate, using the European standard brand, 12Ni14 is a nickel alloy steel plate used in pressure equipment, [TJC STEEL]the common brand of European standard container plate are: HII/P265GH P275NH P275NL P355GH P355NH P355NH P355NL1 P460NH 16Mo3, etc 2. The Implementation Standard of 12Ni14 Steel Plate: EN10028-4(Hot Rolled Type), EN10222-2( Forged Type) 3. Delivery Status of 12Ni14 Steel Plate: The steel plate is usually delivered by normalizing, [TJC STEEL]normalizing and tempering, quenching and tempering 4. Chemical Composition of 12Ni14(%): C: ≤0.15 Si: ≤0.35 Mn: 0.30-0.80[TJC STEEL] P: ≤0.020 S: ≤0.005 Ni: 3.25-3.75 V: ≤0.05 5.Mechanical Property of 12Ni14 Alloy: [GRADE] [DELIVERY STATUS] [THICKNESS /MM] [YIELD STRENGTH /MPa] [TENSILE STRENGTH/MPa] [ELONGATION/% MIN.] [EN10028-4 12Ni14 / EN10222-3 12Ni14] [N/N+T/Q+T] [≤30] [≥355] [490-640] [22] [30-50] [≥345] [50-80] [≥335] 6. Main Applications of 12Ni14 Alloy: 12Ni14 is one kind of nickel [TJC STEEL]alloy materials for pressure equipment especially under low temperature, mainly used in building of pressure equipment, boiler, pressure vessel, LNG tanks, etc. 316Ti stainless steel plate is named 0Cr18Ni12Mo2Ti in international standard, and Chinese brand name is 1Cr18Ni12Mo2Ti stainless [TJC STEEL]steel plate, 316Ti stainless steel plate is added Ti element in SUS316 to improve the resistance to intergranular corrosion. 316Ti stainless steel is used for equipment to resist sulfuric acid, phosphoric acid, acetic acid and acetic acid.
Physical Properties of 316Ti Stainless Steel: A.Chemical Composition(%): C: 0.08 or less Si 1.00 or less Mn 2.00 or less P 0.035 or less S 0.030 or less Ni 10.00 ~ 14.00 [TJC STEEL] Cr 16.00 ~ 19.00 Mo 1.80 ~ 2.50 Ti acuity 0.2 ~ 0.70 GB/T1220-1992 has this provision, usually also called Mo2Ti or 316Ti B.Mechanical Properties: YS (Mpa) ≥205 TS (Mpa) ≥520 EL (%) ≥40 Hv around 200 ° Thickness: cold-tied 2B plate (0.09 -- 6.0mm); Hot rolled industrial plate No.1(3-50mm) [TJC STEEL]medium thick plate, chemical plate, high temperature plate; Width: 5mm-- 850mm steel belt; 1000, 1219, 1250, 1500, 1800, 2000mm coil plate, plate Surface: 2B smooth surface, No.1 industrial surface, BA (6K) mirror, 8K mirror, 9K mirror, drawing surface, frosted surface. Origin: Domestic, imported (Sweden,[TJC STEEL] Japan, Finland, South Korea, South Africa, Taiwan) Key Properties of 316Ti Stainless: These attributes refer to products in similar, but not identical, attributes that are specified in other products, such as plates and forgings in their respective specifications. The lower minimum pre - and post-heat[TJC STEEL] temperatures reduce the incidence of weld cracking and simplify welding. Low hardness decreases the heat affected zone to minimize deterioration in mold performance. Introduction for 15NiMn6 Alloy Steel Plate:
1.15NiMn6 Is a nickel alloy steel plate for [TJC STEEL]pressure applications. Standard: EN10028-4(Hot Rolled Type) or EN10222-3(Forged Type). 2.15NiMn6 Dimensions, Shape, Weight and Allowable Deviation The size, shape and allowable deviation of[TJC STEEL] the steel plate shall meet the requirements of 2007+ A1:2009 in EN10028-1. 3.15NiMn6 Delivery Status 3.1 15NiMn6 Steel Plates are normally delivered in normalizing, normalizing and tempering condition. 3.2 Steel plates shall be delivered by [TJC STEEL]shearing or flame cutting 4. Chemical Composition of 15NiMn6 The chemical composition of nimN6 steel (melting analysis) shall meet the following requirements (%) : Chemical Composition Required for 15NiMN6 (%): C 0.18 or less; Si 0.35 or less; [TJC STEEL]Mn: 0.8-1.5; P 0.025 or less; S 0.015 or less; Al:-; Ni: 1.30-1.70; V 0.05 or less. Elements not listed in this table shall not be intentionally added to steel without the consent of the demander, except after smelting, and all appropriate measures shall be taken during the steelmaking process to prevent the addition of [TJC STEEL]these elements from scrap and other materials which may adversely affect the mechanical properties and serviceability of the steel. Among them: Cr + Cu + Mo 0.5 or less 5.1 15NiMn6 Mechanical Performance: The mechanical and process properties of [TJC STEEL]NIMN6 shall comply with the following table: 15NiMn6 mechanical requirements (transverse) Grade Thickness Yield strength (MPa) Tensile strength (MPa) Elongation A(%) 15NiMn6 ≤30 ≥355 490-640 ≥22 15NiMn6 30-50 ≥345 490-640 ≥22 15NiMn6 50-80 ≥335 490-640 ≥22 S355NL Steel Plate belongs to standard of EN10025-3. Full Name: Normalizing/Normalizing rolled weldable fine grain structure steel plates. This standard together with EN10025-1 replaces EN 10113-1:1993 hot rolled steel products with weldable [TJC STEEL]fine grain structure -- Part 1: General Conditions and EN 10113-2: Hot-rolled weldable fine grain structural steel products - Part 2: Conditions for normalizing/normalizing rolled steel. When the temperature is not less than -20°C, the minimum impact energy is specified, denoted by N. When the temperature is not less than -50°C, the minimum impact energy is specified, denoted by NL.
Name of Steels: S: for structural steel, N: state, capital L: [TJC STEEL]specifies the level of minimum impact energy at a temperature not lower than -50°C. Property Performance Strength: Tensile strength: RM630-450mpa. Yield strength: 355-275mpa, elongation after fracture 21-22%. National Standards Corresponding [TJC STEEL]to S355NL: GB: Q345E JIS: SEV245 ASTM: Type 3 Grade 50 The Typical Application of S355NL Steel Plate: Construction machinery, mining [TJC STEEL]machinery, metallurgy, environmental protection, water conservancy and hydropower structural parts. The Relevant Family Steel Grades of P355NH:
P275NH, P275NL1, P275NL2, P355N, P355NH, P355NL1, [TJC STEEL]P355NL2, P460NH, P460NL1, P460NL2. Steel Grade Levels: Room Temperature Quality Class: P355N High Temperature Quality Grade: P355NH Low Temperature Quality Grade: P355NL1, P460NL1 Special Low Temperature Quality Grade: [TJC STEEL]P355NL2, P460NL2 Tensile Properties P355N, P355NH, P355NL1, P355NL2 thickness 8-260mm Tensile strength RM630-450mpa, yield strength: 355-295mpa, elongation after fracture 21-22% Evaluation of Hydrogen Induced Crack Resistance The evaluation test for hydrogen cracking resistance of steel plate products shall be carried out according to EN10229, and A test solution[TJC STEEL] (PH 3) or B test solution (PH 5) and corresponding acceptance criteria can be selected. HIC Test Acceptance Grade: Acceptance grade: Grade I, Grade II, grade III CLR% crack length ratio, CTR% crack [TJC STEEL]thickness ratio, CSR% crack sensitivity ratio. Application Countries: P355NH is used in Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, [TJC STEEL]Luxembourg, Malta, The Netherlands, Norway, Portugal, Slovakia, Spain, Sweden, Switzerland, the United Kingdom. 1. Carbon (C) : the yield point and tensile strength of steel increase with the increase of carbon content, but the plasticity and impact are reduced, when the carbon content is over
When the welding performance of steel is over 0.23%, [TJC STEEL]the carbon content of low alloy structural steel used for welding is generally not more than 0.20%. High carbon content will reduce the atmospheric corrosion resistance of steel, in the open yard of high carbon steel is easy to rust; In addition, carbon can increase Cold brittleness and aging sensitivity of steel. 2. Silicon (Si) : in the process of steel making, [TJC STEEL]add silicon as a reducing agent and deoxidizer, so the killed steel contains 0.15-0.30% silicon. If the silicon content in the steel exceeds 0.50-0.60%, silicon is considered an alloying element. Silicon can significantly improve the elastic limit, yield point and Tensile strength, so widely used as spring steel. Adding 1.0-1.2% silicon to quenched and tempered structural steel can increase the [TJC STEEL]strength by 15-20%. The combination of silicon and molybdenum, tungsten, chromium, etc., has the effect of improving corrosion resistance and oxidation resistance, and can make heat-resistant steel. Low silicon content of 1-4% Carbon steel, with high permeability, used for making silicon steel sheet in electrical industry. The increase of silicon will reduce the welding performance of steel. 3. Manganese (Mn) : in the process of steel making, manganese is a good deoxidizer and desulfurizer, general steel contains [TJC STEEL]manganese 0.30-0.50%. in When carbon steel is added more than 0.70%, even if "manganese steel", more than the general amount of steel not only has enough toughness, and has a higher Strength and hardness, improve the quenchability of steel, improve the hot working performance of steel, such as 16Mn steel is 40% higher than A3 yield point. 11%-14% manganese steel with extremely high wear resistance, used for excavator bucket, [TJC STEEL]ball mill liner, etc. The increase of manganese content weakens the corrosion resistance of steel and reduces the welding performance. 4. Phosphorus (P) : in general, phosphorus is a harmful element in steel, increase the cold brittleness of steel, so that the welding performance deteriorates, reduce Plastic, so that the cold bending performance deteriorates. Therefore, phosphorus content in steel is usually less than 0.045%, and high quality steel is required to be lower. 5. Sulfur (S) : Sulfur is also a harmful element in general. Make steel produce hot brittleness, reduce the ductility and toughness of steel, in Cracks are caused by forging and rolling. Sulfur is also detrimental to welding performance, reducing corrosion resistance. So sulfur content is usually less than 0.055%, high quality steel requirements [TJC STEEL]less than 0.040%. Adding 0.08-0.20% sulfur to steel can improve machinability Often called free cutting steel. 6. Chromium (Cr) : in structural and tool steels, chromium can significantly improve strength, hardness and wear resistance, but at the same time reduce plasticity and Toughness. Chromium also improves the oxidation resistance and corrosion resistance of steel, so it is an important alloying element in stainless steel and heat-resistant steel. 7. Nickel (Ni) : nickel can improve the strength of steel, while maintaining good plasticity and toughness. Nickel has high corrosion resistance[TJC STEEL] to acid and base Strength, rust resistance and heat resistance at high temperature. However, as nickel is a scarce resource, other alloying elements should be used as far as possible Nickel chrome steel. 8. Molybdenum (Mo) : Molybdenum can refine the grain of steel, improve hardenability and thermal strength performance, and maintain sufficient strength and resistance at high temperature Creep ability (long-term under high temperature stress, deformation, called creep). The mechanical properties of structural steel can[TJC STEEL] be improved by adding molybdenum. It can also inhibit the brittleness of alloy steel due to fire. Redness can be improved in tool steel. 9. Titanium (Ti) : titanium is a strong deoxidizer of steel. It can make the inner structure of steel compact, refine grain force; Reduced age sensitivity And cold brittleness. Improve welding performance. Intergranular corrosion of [TJC STEEL]cr 18 ni 9 austenitic stainless steel can be avoided by adding appropriate ti. 10. Vanadium (V) : vanadium is an excellent deoxidizer of steel. Adding 0.5% vanadium to steel can refine grain structure and improve strength and toughness. vanadium The carbides formed with carbon can improve the resistance to hydrogen corrosion at high temperature and pressure. 11. Tungsten (W) : tungsten melting point is high, significant, is expensive alloy elements. Tungsten forms tungsten carbide with carbon[TJC STEEL] and has high hardness and resistance Grinding. The addition of tungsten to tool steel can significantly improve the red hardness and thermal strength, used as cutting tools and forging dies. 12. Niobium (Nb) : Niobium can refine grain and reduce steel overheating sensitivity and temper brittleness, improve strength, but the plasticity and toughness The decline. Adding niobium to ordinary low alloy steel can improve the corrosion resistance of atmospheric and high temperature hydrogen, nitrogen and ammonia. [TJC STEEL]Niobium can Improve welding performance. Intergranular corrosion can be prevented by adding niobium into austenitic stainless steel. 13. Cobalt (Co) : Cobalt is a rare precious metal, mostly used in special steels and alloys, such as hot steel and magnetic materials. 14. Copper (Cu) : Wisco with daye ore smelting steel, often contain copper. Copper improves strength and toughness, especially for atmospheric[TJC STEEL] corrosion The corrosion performance. The disadvantage is that it is easy to produce hot brittleness during hot working, and the plastic content of copper exceeds 0.5% is significantly reduced. When copper content is less than 0.50% has no effect on weldability. 15. Aluminum (Al) : aluminum is commonly used in steel deoxidizer. Adding a small amount of aluminum to steel can refine grain size and improve impact toughness, such as 08Al steel for deep drawing sheet. Aluminum also has oxidation resistance and corrosion resistance, aluminum combined with chromium, silicon, can significantly improve steel High temperature performance and high temperature corrosion resistance. The shortcoming of aluminum is affecting the hot working property, welding property and cutting property of steel Machining performance. 16. Boron (B) : adding trace boron to steel can improve the density and hot rolling properties of steel, improve the strength. 17. Nitrogen (N): nitrogen can improve the strength of steel, low temperature toughness and weldability, increase the aging sensitivity. Formation of bubbles and porosity. 18. Rare Earth (Xt) : Rare earth elements refer to the 15 lanthanide elements in the periodic table with atomic numbers from 57 to 71. Actually these elements are metals, but their oxides are so earth-like that they are commonly called rare earths. Adding rare earths to steel can change the steel- The composition, morphology, distribution and properties of inclusions improve various properties of steel, such as toughness, weldability, cold workability can add rare earth into ploughshare steel can improve wear resistance. SUS630 is one kind of martensitic precipitate hardened stainless steel, Chinese brand 0Cr17Ni4Cu4Nb. With high strength, high hardness, good welding performance and corrosion resistance. It has been widely used in valve, shaft and chemical fiber[TJC STEEL] industry and high strength parts with certain corrosion resistance requirements. SUS630 is named in JIS standard, and in Chinese standard it is named 0Cr17Ni4Cu4Nb, in ASTM this material is named S17400 and in EN standard it is named X5CrNiCuNb16-4.
Features for SUS630 Stainless: Precipitate hardened section steel with added copper. Used for manufacturing shaft and steam turbine parts. Precipitated-hardened martensitic stainless steel composed of copper, niobium/columbium has low carbon content, better corrosion resistance and weldability than ordinary Martensitic stainless steel, similar to 18-8 stainless steel,[TJC STEEL] simple heat treatment process, good machinability, but difficult to meet cryogenic processing. Metallographic structure: the structure features are precipitate hardening type. Application for SUS630 Stainless: SUS630 Stainless is mainly used for manufacturing parts with high corrosion resistance and high strength, such as bearings and [TJC STEEL]steam turbine parts, offshore platforms, helicopter decks, other platforms food industry pulp and paper industry Aerospace (turbine blades) machinery parts nuclear waste drums, etc. Chemical Composition for SUS630 Stainless(%): Carbon C: 0.07 or less Si Si: 1.00 or less Manganese Mn: 1.00 or less S: sulfur 0.030 or less P P: 0.035 or less Chromium Cr: 15.50 ~ 17.50 Nickel Ni: [TJC STEEL]3.00 ~ 5.00 Cu: 3.00 ~ 5.00 Niobium Nb: 0.15 ~ 0.45 Delivery Condition for SUS630 Stainless: Generally, the goods are delivered in the condition of heat treatment, and the type of heat treatment is indicated [TJC STEEL]in the contract. If it is not indicated, the goods will be delivered without heat treatment. SUS630 alloy is precipitated, quenched, martensitic stainless steel, and this grade has properties such as high strength, hardness and corrosion resistance. After heat treatment, the mechanical properties of the product are more perfect, and the compressive strength can reach up to 1100-1300 mpa [TJC STEEL](160-190 kSi). This grade is not intended for use above 300℃ (570F) or very low temperatures. It has good corrosion resistance to atmospheric and diluted acids or salts, as is the case with 304 and 430. Mechanical Properties: Tensile strength σ B (MPa) : aged at 480℃,≥1310; 550 ℃ ageing, p 1060; 580 ℃ ageing, p 1000; 620 ℃ ageing, p. 930 Condition yield strength σ0.2 (MPa) : aged at 480℃,≥1180; 550 ℃ ageing, p 1000; 580 ℃ ageing, p 865; [TJC STEEL]620 ℃ ageing, p. 725 Elongation δ5 (%) : aged at 480℃,≥10; 550 ℃ ageing, 12 or higher; 580 ℃ ageing, 13 or higher; 620 ℃ ageing, 16 or higher ψ (%) : aging at 480℃,≥40; 550 ℃ ageing, 45 or higher; 580 ℃ ageing, 45 or higher; 620 ℃ ageing, 50 or more Hardness: solution,≤363HB and ≤38HRC; Aged at 480℃,≥375HB and ≥40HRC; Aged at 550℃,≥331HB and ≥35HRC; [TJC STEEL]Aged at 580℃,≥302HB and ≥31HRC; Aging at 620℃,≥277HB and ≥28HRC Heat Treatment Specification: 1) Fast cooling at 1020 ~ 1060℃ for solution; 2) Aged at 480℃, air cooled at 470 ~ 490℃ after solution treatment; 3) Aged at 550℃, [TJC STEEL]air cooled at 540-560 ℃ after solution treatment; 4) Aged at 580℃, air cooled at 570 ~ 590℃ after solution treatment; 5) Aging at 620℃, after solution treatment, air cooling at 610 ~ 630℃. Metallographic structure: the structure features are precipitate hardening type. 5083 belongs to Al-Mg alloy, which is widely used and especially in the construction industry. It is the most promising alloy. 5083 Aluminum Alloy has good corrosion resistance, good weldability, good cold processing and moderate [TJC STEEL]strength. The main alloy element of 5083 is magnesium, which makes this kind alloy be with good forming performance, corrosion resistance, weldability and medium strength. It is used for manufacturing aircraft fuel tank, oil pipe, as well as sheet metal parts of transportation vehicles and ships, instruments, street lamp supports and rivets, hardware products, electrical shell and so on.
Introduction of 5083 Aluminum Alloy: 5083 Al-Mg alloy, is one of the most widely used antirust aluminum, this alloy has high strength, especially with fatigue strength: high plasticity and corrosion resistance, can not be heat treatment strengthening, in the semi-cold hardening plasticity is good, cold hardening plasticity is low, good corrosion resistance, good weldability, poor machinability, polishing. It is mainly used for low load parts which require high plasticity and good weldability in liquid or gas medium, such as fuel tank, gasoline or lubricating oil [TJC STEEL]conduit, various liquid containers and other small load parts made by deep drawing: wire is used for rivets. Applications: 5083 aluminum alloy plate is often used in ships, ships, vehicle materials, automobile and aircraft plate welding parts, pressure vessels that need strict fire protection, refrigeration devices, TV towers, drilling equipment, [TJC STEEL]transportation equipment, missile components, armor, etc. Chemical Composition(%): Aluminum Al: allowance Si Si: 0.4 or less Copper Cu: 0.1 or less Magnesium Mg: 4.0-4.9 Zinc and zinc: 0.25 Manganese Mn: 0.40-1.0 Ti Ti: 0.15 or less Chromium Cr: 0.05-0.25 Iron Fe: 0.4 [TJC STEEL] Individual: 0.05 Total: 0.15 Mechanical Properties of 5083 Aluminum Alloy: Tensile strength σ B (MPa) : 110-136 Elongation δ10 (%) : ≥20 Annealing temperature: 415℃. Yield strength σ S (MPa) ≥110 Sample blank dimensions all wall thicknesses Picture of 5083 aluminum plate Picture of 5083 aluminum plate Elongation δ5 (%) ≥12 Technical Standards: National standard of aluminum plate and belt (GB/T 3880-2006), applicable to the unified standard of aluminum alloy plate and belt materials. Representation Method: 1) The brand of processed products Aluminum [TJC STEEL]Association of America (AA) on the deformation of aluminum and aluminum alloy brand expression method, namely four numbers code expression method, as early as 1957 was accepted as the United States national standard (ANSIH35.1), the main aluminum production enterprises in the United States have gradually adopted this brand expression method, later, the United States military standard (MIL), American Society of Automotive Engineers (SAE), American Society of Materials and Testing (ASTM) have been adopted, but also in other countries. In 1970, based on the four-digit code of AA standard, the international four-digit system of deformed aluminum and aluminum alloy was produced, referred to as IDS. As a result, the deformed aluminum and aluminum alloy parts of AA standard have become international standards. 1) The first digit of the AA standard four-digit code indicates grouping by major alloy elements. The group is divided as follows: 1XXX pure [TJC STEEL]aluminum (aluminum content not less than 99.00%), 2XXX Al-Cu alloy; 3XXX Al-Mn alloy; 4XXX Al-Si alloy; 5XXX Al-Mg alloy; 6XXX Al-Mg-Si alloy; 7XXX Al-Zn alloy; 8XXX aluminum and other alloys; 2) The second digit of the four-digit code, indicating the modification, or the control of impurities and combined elements, 3) The last two digits of a four-digit code (i.e. the third and fourth digits) have the following meanings: For group 1XXX, the last two digits represent the two digits after the decimal point of the lowest percentage of pure[TJC STEEL] aluminum (99.00%), for example: grade 1085, ψ AL9985%. For groups 2XXX-8XXX, the last two digits have no specific meaning and are used only as serial numbers to identify different aluminum alloys in the same group. 1100 is industrial pure aluminum, aluminum content (mass fraction) is 99.00%, can not be heat treatment hardening. With high corrosion resistance, electrical conductivity and thermal conductivity, its density is small, good plasticity, through[TJC STEEL] pressure processing can produce a variety of aluminum, but low strength. Other process properties are basically the same as 1050A. 1100 is usually used for good forming performance, high corrosion resistance, does not need high strength, such as food and chemical handling and storage equipment, sheet metal products, hollow metal spinning processing with drawing goods, welding combination keys, reflectors, nameplates, etc.
1100 aluminum plate belt belongs to pure aluminum plate series, its strength is relatively low, has excellent ductility, formability, weldability and corrosion resistance; After anodic oxidation, the corrosion resistance can be further improved [TJC STEEL]and the beautiful surface can be obtained. But cannot heat treatment strengthen. Pure aluminum plate series according to the last two Arabic numbers to determine the minimum aluminum content of this series, such as 1100 series last two Arabic numbers for 00, according to the international brand naming principle, the aluminum content must reach more than 99.00% for qualified products. China's aluminum [TJC STEEL]alloy technical standard (GB/T3880-2012) also clearly stipulates that 1100 aluminum content reaches 99.0%. Applications of 1100 Aluminum: 1100 aluminum strip is generally used in utensils, radiators, bottle caps, printing plates, building materials, heat exchanger components, [TJC STEEL]but also can be used as deep stamping products. It is widely used in various fields from cooking utensils to industrial equipment. Chemical Composition: Al: 99.00 Si: 0.45 Cu: 0.05 ~ 0.20 Mg: -- Zinc Zn: 0.01 Manganese Mn: 0.035 Titanium Ti: -- Vanadium V: 0.05 Fe: 0.35 Note: Single :0.05. Mechanical Properties: Tensile strength σ B (MPa) : 110 ~ 136. Elongation δ10 (%) : 3 ~ 5. The Technical Standards: National standard of aluminum plate and belt (GB/T 3880-2012), applicable to the unified standard of aluminum alloy plate [TJC STEEL]and belt materials. Alternative Names for 1100 Aluminum: 1100 (L6-1) -- International Standard: Al99.0(ISO); Japan: Al100/Al00 (JIS); European Standard: EN AW 1100 (EN) [TJC STEEL]France: A45; Canada 990C (CSA); USA: 1100 (AA). EQ70 is a kind of high strength steel plate for offshore platform. The commonly used brands are EQ70 and [TJC STEEL]EQ70-Z35.
Technical Conditions: 1. Chemical Composition (Melting Analysis, %) Chemical composition (melting analysis, %) shall conform to the following table. Ni, Mo, Nb, V, Zr, Cu, B should be reported. For EQ70-Z35, S is not greater than 0.005%. [TJC STEEL] TABLE 1 C Si Mn P S N ≤0.18 ≤0.55 ≤1.60 ≤0.025 ≤0.025 ≤0.020 2. Size, Shape, Weight and Allowable Deviation, Surface Quality Should Comply with ASTM A6/A6M. 3. Delivery State of EQ70 Marine Steel: Quenching + Tempering. 4. Mechanical Properties of EQ70 Marine Steel: Mechanical properties should [TJC STEEL]conform to the following table. Eq70-z35 should also comply with the provisions of GB/T5313. Yield Strength N/mm2 Tensile Strength N/mm2 Elongation % -40℃,AKV,J ≥690 770~940 ≥14 纵向 ≥69 横向 ≥46 5. Ultrasonic Inspection: The steel plate is tested by ultrasonic method according to ASTM A578/A578M, and the qualified grade is C. 6. Inspection Rules, Inspection Items and Test Methods Should comply with [TJC STEEL]certification sampling related notice. 7. Mark and Quality Certificate Should comply with ABS Classification Society regulations. 8. Relevant Steel Grades with EQ70 Steel: Marine engineering steel NVE690 is EQ70 grade steel of American standard. After testing, the performance indexes of the steel can meet the requirements of users. This steel grade is the first Marine steel successfully [TJC STEEL]developed by Wugang, marking a new breakthrough in the research and development of Marine steel. Marine platforms (including oil production platforms and drilling platforms) are subject to the erosion and destruction of natural forces such as waves, submarine earthquakes and low temperature, so the technical specifications of steel are very high, and the technical standards of steel used in key parts such [TJC STEEL]as rack and pile leg are more demanding. In order to realize the localization of steel for offshore platform, Wugang began to develop 140mm thick tempered and tempered high strength steel A514GrQ in 2008, which took 10 months to achieve success. At the same time of mass production of 140mm thick A514GrQ, Wugang quickly put into the research and development of the steel with greater thickness. In 5 months, we have developed A514GrQ of 150mm, 180mm, 215mm and other thickness specifications, and successfully passed the CERTIFICATION of [TJC STEEL]ABS Classification Society. This means that China's offshore platform with high strength steel series all thick plate, wugang all can produce independently. When proceeding with heat treatment (quenching and tempering), SUS420J2 has excellent corrosion resistance, polishing performance, high strength and wear resistance, suitable for manufacturing plastic mold bearing high load, high [TJC STEEL]wear resistance and under the action of corrosive media.
Standard of SUS420J2 Stainless Steel: JIS G 4303:2005 SUS420J2 stainless steel is martensitic type stainless steel, this kind of stainless has good machining performance, the hardness of 3Cr13 material below HRC30 after quenching and tempering treatment is better machinability, [TJC STEEL]easy to achieve better surface quality. While hardness is greater than HRC30 processed parts, although the surface quality is better, but the tool is easy to wear. Therefore, in the material into the factory, the first quenching and tempering treatment hardness reached HRC25 ~ 30, and then the cutting process. SUS420J2 has high hardness after quenching, used as cutting tools, nozzle, seat, valve, etc. The density of SUS420J2 is 7.75g/cm3. Chemical composition C 0.26-0.40Mn ≤ 1.00Si ≤1.00,P≤ 0.040s ≤ 0.030Cr 12.00-14.00Ni ≤0.60 [TJC STEEL] Mechanical Properties of SUS420J2: Yield strength (N/mm2) ≥540 Tensile strength (N/mm2) ≥740 Elongation EL (%) ≥12 HRC hardness 50 to 55 Hardness acuity HBW217 Area shrinkage rate /% ≥40 Charpy impact value/(J/cm2) ≥29[3] Heat treatment / ℃ Quenching [TJC STEEL]temperature 1000~1050℃ Tempering temperature 200~500℃ SUS420J2’s Properties: Rust resistance, corrosion resistance, avoid heat treatment, will not produce heat treatment caused by the deformation, ultra mirror [TJC STEEL]processing performance, in the state of annealing has good mechanical processing performance. Application: SUS420J2 Stainless is widely used in fluorinated plastics with corrosive gases or corroded plastic moulds with[TJC STEEL] added flame retardants, etc. ‘APPLE’ of the United States introduced a titanium laptop many years ago. The computer not only has advanced performance, but its [TJC STEEL]case is made of titanium. While many laptops claim to have Titanium shells, most are Titanium plated, this Titanium Power Book G4 laptop has a Grade 1 industrial Titanium shell. It is also the world's first pure titanium computer casing. The overall thickness of the computer is 25.4mm and the weight is 2.4kg. Titanium used in computer shell in the titanium industry and computer industry have a great influence. Titanium shells delivered in grey colour can be oxidized to red, purple and yellow.
Apple's titanium-clad computer is expected to challenge SONY's magnesium-clad model, which is not only beautiful in appearance but also has excellent performance. Compared with magnesium, titanium has high tensile strength (106.3GPa for titanium and 44.4GPa for magnesium) and low thermal conductivity. Titanium is 17W/m.K, [TJC STEEL]only one tenth of that of magnesium (159W/m.K). Therefore, the titanium shell can maintain strength while realizing thin wall, inhibit heat diffusion from hardware and prevent heating on the bottom. IBM's Think Pad A series (A20p) and T series (T20) laptop cases use titanium composite materials, which not only improve the strength and seismic [TJC STEEL]performance of the case, but also make the computer thinner and lighter. HP's X16-1201TX and X16-1301TX notebooks also use titanium shells. Fujitsu of Japan makes a small A5, 890GB lightweight laptop that uses [TJC STEEL]pure titanium. The company also uses titanium in the casing of its INTERTOP CX300 laptop. Titanium alloy has the advantages of low density, high specific strength, good toughness, good corrosion resistance and good machining performance, [TJC STEEL]which makes it an ideal structural material for aerospace engineering.
Titanium alloy is a new kind of structural material, it has excellent comprehensive properties, such as low density (~4.5g cm-3), high specific strength and specific fracture toughness, good fatigue strength and crack propagation resistance, good low temperature toughness, excellent corrosion resistance, the highest operating temperature of some titanium alloys is 550ºC, expected up to 700ºC. Therefore, it is increasingly[TJC STEEL] widely used in aviation, chemical industry, medical treatment, shipbuilding and other industrial sectors, rapid development. Another significant characteristic of titanium is strong corrosion resistance, which is the affinity of titanium to oxygen is particularly large, can generate a layer of dense oxide film on its surface, can protect titanium from medium corrosion. Titanium metal can form passivated oxide film on the surface in most aqueous solutions. [TJC STEEL]Therefore, titanium has good stability in acidic, alkaline, neutral salt aqueous solution and oxidizing medium, but in a certain medium, can continuously dissolve titanium oxide film on the surface, titanium in this medium will be corroded. For example, in hydrofluoric acid, concentrated hydrochloric acid, fluvial acid, and phosphoric acid, the titanium is corroded as the solution dissolves the oxide film on the titanium surface. If oxidant or some metal ions are added to these solutions, the oxide film on the titanium surface is protected. Titanium alloy and titanium rod/titanium plate has high strength and low density, good mechanical properties, good toughness and corrosion resistance. In addition, titanium alloy process performance is poor, cutting difficult, in hot processing, it is very easy to absorb impurities such as hydrogen, oxygen, nitrogen and carbon. There are poor wear resistance, complex production process. Industrial production of titanium began in 1948. The needs of the development of aviation industry make[TJC STEEL] the titanium industry develop at an average annual growth rate of about 8%. At present, the annual output of titanium alloy processing materials in the world has reached more than 40,000 tons, nearly 30 kinds of titanium alloy. The most widely used titanium alloys are Ti-6Al-4V(TC4),Ti-5Al-2.5Sn(TA7) and industrial pure titanium (GRADE 1, GRADE 2 and GRADE 3).
Titanium alloy is mainly used to make aircraft engine compressor parts, followed by rockets, missiles and high-speed aircraft structural parts. By the mid-1960s, titanium and its alloys had been used in general industry to make electrodes for electrolysis industry, condensers for power stations, heaters for oil refining and seawater desalination, and pollution control devices. Titanium and its alloys have become a kind of corrosion resistant structural materials. In addition, it is also used to produce hydrogen storage materials and shape memory alloys. Titanium alloy is a new important [TJC STEEL]structural material used in aerospace industry. Its specific gravity, strength and service temperature are between aluminum and steel, but it has high specific strength and excellent seawater corrosion resistance and ultra-low temperature performance. The amount of titanium alloy in the aero-engine generally accounts for 20% to 30% of the total weight of the structure. It is mainly used in the manufacture of compressor components, such as forged titanium fans, compressor discs and blades, cast titanium compressor casing, intermediary casing, bearing housing, etc. Spacecraft mainly use titanium alloy high specific strength, corrosion resistance and low temperature performance to manufacture a variety of pressure vessels, fuel tanks, fasteners, instrument straps, frames and rocket housing. Man-made earth satellite, [TJC STEEL]lunar module, manned spacecraft and space shuttle also use titanium plate welding pieces. Titanium metal has excellent corrosion resistance and mechanical properties, is widely used in many departments. Especially in chemical applications, titanium can replace stainless steel as a corrosion resistant material, which has a very important significance in extending the service life of equipment, reducing costs, preventing pollution and improving productivity. In recent years, the scope of titanium used in chemical [TJC STEEL]industry in China is constantly expanding, the amount of titanium is increasing year by year, titanium has become one of the main anti-corrosion materials in chemical equipment. Titanium, as a kind of corrosion-resistant structural material used in chemical equipment, has become an ideal material in chemical equipment.
Chlor-Alkali Industry Chlor-alkali industry is an important basic raw material industry, its production and development have a great impact on the national economy. This is because titanium has better corrosion resistance to chloride ions than commonly used stainless steel and other non-ferrous metals. At present, titanium is widely used in the chlor-alkali industry to manufacture metal anode electrolytic cell, ion membrane electrolytic cell, wet chlorine cooler, refined brine preheater, dechlorination tower, chlorine cooling washing tower and so on. In the past, non-metallic materials (such as graphite and polyvinyl chloride) were mostly used for the main parts of these equipment. Due to the unsatisfactory[TJC STEEL] mechanical properties, thermal stability and processing performance of non-metallic materials, the equipment was bulky, consuming large energy and having short service life, and affected product quality and polluted the environment. Therefore, since the 1970s, metal anode and ion membrane electrolytes have been used to replace graphite electrolytes, and titanium wet chlorine cooler has been used to replace graphite cooler, and good results have been achieved. For example: the application of titanium wet chlorine cooler. Salt electrolysis production of caustic soda is to produce a large amount of high temperature wet chlorine gas, the temperature is generally 75~95℃, need to be cooled and dried before use. The production of chlorine gas from salt electrolysis in China has affected the output and quality of chlorine gas in the past because of unreasonable cooling process or corrosion of cooling equipment, and seriously polluted the environment. Titanium [TJC STEEL]coolers resistant to high temperature wet chlorine corrosion were put into production, which changed the production face of chlorine in chlor-alkali industry. Titanium is very resistant to corrosion in the environment of high temperature and wet chlorine. The corrosion rate of titanium in chlorine water at room temperature is 0.000565mm/a. In chlorine water at 80℃, the corrosion rate of titanium is 0.00431mm/a. In 95% wet chlorine, the corrosion rate of titanium at room temperature is 0.00096mm/a. Many chlor-alkali coolers, often made of titanium wet chlorine, have been in use for nearly 20 years and are still in good condition. Soda Ash Industry Soda ash is one of the most basic chemical raw materials, which is directly related to the development of national economy. In the process of soda production, the gas medium is mostly NH3 and CO2, and the liquid medium is mostly NaCl, NH4Cl, NH4HCO3 and Cl- solution with high concentration. The main equipment [TJC STEEL]such as carbonation tower tubs made of carbon steel and cast iron for carbonation reaction, hot mother liquor cooler, cooler and crystallizing outer cooler are not corrosion resistant and have serious corrosion leakage. Service life is not more than three years. From 1975 to 1977, Tianjin Alkali Plant and Dalian Chemical Industry Company set up factories and carried out demonstration work of titanium application. The cooling pipe of carbide tower 63×2mm, titanium plate heat exchanger, titanium external cooler, titanium pump, ROTOR of CO2 turbine compressor, Ti-6Al-4V alloy impeller and so on had good application effect. This for the whole industry with titanium technology transformation and the new three annual output of 600 thousand [TJC STEEL]tons of pure alkali plant played a model role. For example: the ammonia condenser at the top of distillation tower in a pure alkali plant uses pure titanium tube instead of cast iron tube. Ammonia condenser is the equipment for condense ammonia gas from distillation tower in the process of soda production. It is composed of two cast iron cooling boxes, each box has a diameter of 2.5m and a height of 1.2m. The original box contains 214 cast iron tubes with a diameter of 63×6×2986mm, a total of 428. The tube is anticorrosive with thermosetting phenolic varnish inside and outside. The medium outside the tube is NH3, CO2, H2O vapor, and the temperature is about 95℃. NH4Cl mother liquor is carried out in the tube for heat exchange with the medium outside the tube. Under this condition, the cast iron pipe corroded seriously, some of the pipe corroded and perforated in one year, and corroded and damaged seriously in two years, so it stopped using. In order to solve the serious corrosion problem of cast iron pipes in ammonia condenser, all cast iron pipes were replaced with TA2 titanium pipes, with specifications of φ 60×2×3010mm. The titanium pipe ends and cast iron plates were [TJC STEEL]sealed with O-type rubber rings. This is the first distillation tower in China's soda industry using pure titanium tube cooling. It has been put into production and used for more than two years. No corrosion phenomenon was found when the pipe was pulled out for macroscopic inspection. It is expected to have a service life of more than 20 years, 10 times longer than the cast iron pipe. Due to the corrosion resistance of titanium tubes, the heat transfer efficiency remains good (cast iron tubes have good heat transfer efficiency in the early stage, poor in the middle stage and failure in the late stage during a three-year overhaul). The NH4Cl mother liquor in tubes is preheated to recover heat and improves the temperature of mother liquor entering the distillation tower, which can save a lot of steam and bring obvious economic [TJC STEEL]benefits. 1. Good Corrosion Resistance- The corrosion [TJC STEEL]resistance of titanium alloy is much better than that of stainless steel when working in humid atmosphere and seawater medium. Resistance to pitting corrosion, acid corrosion, stress corrosion is particularly strong; Excellent corrosion resistance to alkali, chloride, chlorine organic articles, nitric acid, sulfuric acid and so on. But titanium has poor corrosion resistance to reducing oxygen and chromite medium.
2. Low Temperature Performance is Good- Titanium alloy can keep its mechanical properties at low temperature and ultra low temperature. Titanium alloys with good low temperature performance and very low clearance elements, [TJC STEEL]such as TA7, can maintain certain plasticity at -253℃. Therefore, titanium alloy is also an important low temperature structural material. 3. Chemical Activity- Titanium has high chemical activity, and has strong chemical reaction with O, N, H, CO, CO2, water vapor and ammonia in the atmosphere. When the carbon content is greater than 0.2%, hard TiC will be formed in titanium alloy. When the temperature is higher, TiN hard surface layer can be formed by the interaction with N. Above 600℃, titanium absorbs oxygen to form a hard layer with high hardness. When hydrogen content increases, embrittlement layer will also be formed. [TJC STEEL]The depth of hard brittle surface produced by gas absorption can reach 0.1 ~ 0.15mm, and the hardening degree is 20% ~ 30%. Titanium chemical affinity is also large, easy to friction surface adhesion phenomenon. 4. Small Thermal Conductivity Elasticity- The thermal conductivity of titanium λ=15.24W/ (m.K) is about 1/4 of nickel, 1/5 of iron, 1/14 of aluminum, and the thermal conductivity of various titanium alloys is about 50% lower than that of titanium. The elastic modulus of titanium alloy is about 1/2 of steel, so its rigidity is poor, easy deformation, should not make slender rod and thin wall parts, cutting the processing surface of the[TJC STEEL] springback is very large, about 2 ~ 3 times of stainless steel, resulting in severe friction, adhesion, adhesion wear of the tool surface. Characteristics and Properies for Commercially Pure Titanium and Titanium Alloy- TJC STEEL.10/21/2021
1. Specific Gravity: the specific gravity of titanium alloy is about 4.55, which is usually 57% of stainless steel. It is easy to identify from[TJC STEEL] the feel.
2. Color: the natural color of titanium alloy is gray, color texture is different from stainless steel, aluminum alloy. Because titanium alloy is more difficult to polish, coloring, so usually the surface of titanium alloy products is mechanical polishing or grinding, only a few high-grade titanium alloy products local mirror light. [TJC STEEL]And mechanical polishing and ground surface color is titanium alloy unique gray or dark gray. 3. Strength: the strength of titanium alloy is [TJC STEEL]higher than the general stainless steel and aluminum alloy, can reach 2 times of stainless steel. TP347H large diameter thick wall φ 711mm*88mm seamless pipe is mainly used in hydrorefining unit projects and ten million tons of refining and chemical integration projects, with the production capacity of a single unit greatly improved, the diameter and wall thickness of stainless steel seamless pipe demand also increased. Its process route is round steel, hot perforation, cold rolling, heat treatment,[TJC STEEL] inspection and test. The TP347H φ 711mm*88mm pipe produced by the above process can meet the needs of various devices, especially high-pressure hydrogenation units.
N08367 large diameter thin wall φ 711*11mm seamless pipe is mainly used in the field of nuclear power, with the trend of nuclear power, seawater cooling system seawater pipe due to long-term contact with seawater, more prone to local spot corrosion perforation, cracking phenomenon, N08367 as corrosion resistant seawater medium material, Its high strength and corrosion resistance make it the best alternative to conventional duplex steel and expensive nickel-based alloys. Its process route[TJC STEEL] is round steel, re-inspection, peeling, perforation. Inspection, grinding, pickling, inspection, lubrication drying, cold rolling/drawing, degreasing, heat treatment, straightening, pickling passivation, finished product inspection, identification, packaging, shipping. The N08367 φ 711mm*11mm pipe produced by the above process meets the requirements of the standard and technical conditions, and the comprehensive evaluation of corrosion resistance is higher than the standard requirements. In the process of stainless steel seamless tube processing, stainless steel tube pickling passivation work is very important. Only do a good job in pickling[TJC STEEL] passivation can ensure its excellent characteristics.
Stainless steel seamless tube pickling passivation use organic solvent and moisturizing emulsion to clean the bottom pressure fluid mechanics transport welded tube surface, to remove oil, vegetable grease, dust, lubricating fluid and similar organic compounds, but can not remove rust, oxide, etc.. On the surface of the steel, so it is only used as an auxiliary chemical water treatment of stainless steel seamless pipe for corrosion resistance production although it can make the surface layer to do a certain level of cleaning and not smooth, but the steel anchoring line is shallow, it is very easy to environmental[TJC STEEL] pollution spiral welded pipe accumulation natural environment. Different ways of derusting methods and ways will cause certain key harm to stainless steel seamless tube, harm many characteristics and elements. In the whole process of cleaning, the regulations strictly follow certain standards and methods to ensure excellent expression of use value in the application. From manufacturing to sewage and organic waste gas acquisition system software, stainless steel seamless pipe pickling passivation production line is an important link have obvious erosion. Therefore, the selection of anticorrosive coatings is immediately associated with the normal application of machinery and equipment, production workshop wood floors, trenches, sewage, organic waste gas, environmental protection [TJC STEEL]acquisition system software and so on. Therefore, in pickling passivation stainless steel seamless tube, should pay attention to this key point, in order to ensure its excellent characteristics. Forging is one of the two components of forging (forging and stamping), which is a processing method that makes use of forging machinery to exert pressure on metal billets and produce plastic deformation to obtain forgings with certain mechanical properties, certain shape and size. Through forging can eliminate the defects such as loose cast state produced in the smelting process of metal, optimize the microstructure structure, at the same time because of the preservation of a complete metal streamline, the mechanical properties of the forging is generally better than the same material castings. [TJC STEEL]Forgings are mostly used for the important parts with high load and severe working conditions in the relevant machinery, except for the simple plate, profile or welding parts that can be rolled.
Application: Mainly used in automobiles, general machinery and so on Wuxi turbine blade maximum impact force 35,500 tons of screw press The initial recrystallization temperature of steel is about 727℃, but 800℃ is generally used as the dividing line, higher than 800℃ is hot forging; Between 300 and 800℃ is called warm forging or semi-hot forging, forging at room temperature is called cold forging. Forgings used in most industries are hot forging. Warm forging and cold forging are mainly used in forging parts of automobiles and [TJC STEEL]general machinery. Warm forging and cold forging can effectively save material. Forging Category As mentioned above, according to the forging temperature, it can be divided into hot forging, warm forging and cold forging. According to the forming mechanism, forging can be divided into free forging, die forging, grinding ring and special forging. 1, free forging. It refers to the processing method of forging parts with simple universal tools, or directly applying external force to the blank between the upper and lower anvils of forging equipment, so that the blank can be deformed and the required geometric shape and internal quality can be obtained. The forging produced by free forging method is called free forging. Free forging is based on the [TJC STEEL]production of small number of forgings, forging hammer, hydraulic press and other forging equipment to form the blank processing, obtain qualified forgings. The basic processes of free forging include upsetting, drawing, punching, cutting, bending, twisting, dislocation and forging. Free forging is all hot forging. 2, die forging. Die forging is divided into open die forging and closed die forging. The metal blank is deformed under pressure in the forging die chamber of a certain shape to obtain the forging. Die forging is generally used to produce small weight and large batch parts. Die forging can be divided into hot die forging, warm forging and cold forging. Warm forging and cold forging are the future [TJC STEEL]development direction of die forging and represent the level of forging technology. According to the material, die forging can also be divided into black metal die forging, non-ferrous metal die forging and powder products forming. As the name implies, is that the materials are carbon steel and other ferrous metals, copper and aluminum and other non-ferrous metals and powder metallurgy materials. Extrusion should be attributed [TJC STEEL]to die forging, can be divided into heavy metal extrusion and light metal extrusion. Closed die forging and closed upsetting forging are two advanced techniques of die forging. It is possible to finish complex forgings with one or more steps. Because there is no flying edge, the forgings force area is reduced, the required load is reduced. However, it should be noted that the blank can not be completely limited, so it is necessary to strictly control the volume of the blank, control the relative position of the forging die and measure the forgings, and try to reduce the wear of the forging die. 3, grinding ring. Grinding ring refers to the production of ring parts of different diameters through special equipment[TJC STEEL] grinding ring machine, also used to produce car wheel hub, train wheels and other wheel parts. 4, special forging. Special forging includes roll forging, cross wedge rolling, radial forging, liquid die forging and other forging methods, which are more suitable for the production of some special shape parts. For example, roll forging can be used as an effective preforming process to greatly reduce the subsequent forming pressure; Cross wedge rolling can produce steel balls, drive shafts and other parts; Radial forging can produce large gun barrel, step shaft and other forgings. die According to the motion mode of forging die, forging can be divided into swing forging, swing forging, roll forging, cross wedge rolling, ring rolling and cross rolling. Rotary forging, rotary forging and ring forging[TJC STEEL] can also be processed by precision forging. In order to improve the utilization rate of materials, roll forging and cross rolling can be used as the prior process of slender materials. Rotary forging, like free forging, is also partially formed. Its advantage is that compared with the forging size, the forging force can also be formed under the condition of small. Including free forging, the way of forging and processing the materials from the mold surface near to the free surface extension, therefore, it is difficult to guarantee the accuracy, so will the movement direction of the forging die and spin blacksmith sequence with computer control, a lower forging force are available on complex shape, high precision products, such as the production of many varieties, large size of the turbine blade forgings. The die movement and degree of freedom of forging equipment are inconsistent. According to the characteristics of deformation limitation of bottom dead point, forging equipment can be divided into the following four forms: 1, limited forging force form: oil pressure direct drive slider hydraulic press. 2. Quasi-stroke limit: hydraulic press driven by crank and connecting rod mechanism. 3, stroke limit mode: crank, connecting rod and wedge mechanism to drive the slider mechanical press. 4. Energy limit: Screw and friction press with screw mechanism. In order to obtain high accuracy, care should be taken to prevent overload at the bottom dead point, control speed and mold position. Because these will have an impact on forging tolerance, shape accuracy and die life. [TJC STEEL] In addition, in order to maintain accuracy, attention should also be paid to adjusting the slideway gap, ensure stiffness, adjust the bottom dead point and use of auxiliary transmission device and other measures. The Slider There are vertical and horizontal movement of the slider (used for slender forging, lubrication cooling and high-speed production of parts forging), the use of compensation device can increase the movement of other [TJC STEEL]directions. The required forging force, process, material utilization, yield, dimensional tolerance and lubrication cooling methods are also factors that affect the level of automation. Forging Materials The forging materials are mainly carbon steel and alloy steel, followed by aluminum, magnesium, copper, titanium and their alloys. The original state of the material is bar, ingot, metal powder and liquid metal. The ratio of the cross-sectional area of a metal before and after deformation is called the forging ratio. Correct selection of forging ratio, reasonable heating temperature and holding time, reasonable initial forging temperature and final forging temperature, reasonable amount [TJC STEEL]of deformation and deformation speed have great influence on improving product quality and reducing cost. General small and medium forgings are round or square bars as billets. The bars have uniform grain structure and good mechanical properties, accurate shape and size, good surface quality, convenient for mass production. As long as the heating temperature and deformation conditions are controlled reasonably, good forgings can be forged without large forging deformation. Ingot is only used for large forgings. The ingot is an as-cast structure with large columnar crystals and loose centers. Therefore, the columnar crystals must be broken into fine grains through large plastic[TJC STEEL] deformation, and loose compaction can obtain excellent metal structure and mechanical properties. Powder forging can be made from pre - made powder metallurgy preforms after pressing and firing under hot state by die forging without flapping. Forgings powder is close to the density of ordinary die forgings, with good mechanical properties and high precision, which can reduce subsequent cutting. Powder forgings with uniform internal structure and no segregation can be used to manufacture small gears and other workpiece. However, the price of powder is much higher than that of ordinary [TJC STEEL]bar, so its application in production is limited. The desired shape and properties of die forgings can be obtained by applying static pressure to the liquid metal pouring in the die chamber to make it solidify, crystallize, flow, plastic deformation and form under the action of pressure. Liquid metal die forging is a forming method between die casting and die forging, especially suitable for complex thin-walled parts which are difficult to be formed by ordinary die forging. Forging materials in addition to the usual materials, such as various composition of carbon steel and alloy steel, followed by [TJC STEEL]aluminum, magnesium, copper, titanium and its alloys, high temperature iron base alloy, nickel base superalloy, cobalt-based superalloy deformation of the alloy also USES forging or rolling way, only the alloy due to its plastic zone is relatively narrow, so the forging difficulty will be relatively large, Different materials heating temperature, open forging temperature and final forging temperature have strict requirements. Classification 1. Aircraft forgings 2, diesel engine forgings Marine forgings 4. Weapon forgings 5, mine forgings 6, nuclear power forgings 7, petrochemical forgings The Process Flow Different forging methods have different processes, among which the hot die forging process is the longest, the general [TJC STEEL]order is: forging blank blanking; Forging billet heating; Roll forging billet preparation; Die forging; Trimming; Punching; Correction; Intermediate inspection, inspection forgings size and surface defects; Heat treatment of forgings to eliminate forging stress and improve metal cutting performance; Cleaning, mainly to remove the surface oxide skin; Correction; Inspection, general forgings to go through the appearance and hardness inspection, important forgings also through chemical composition analysis, mechanical properties, residual stress and other tests and non-destructive testing. Characteristics of Forgings Compared with castings, the microstructure and mechanical properties of metal can be improved after forging. Casting[TJC STEEL] organization after forging method of thermal deformation due to metal deformation and recrystallization, make original bulky dendrite and columnar grain to grain is fine and uniform axial recrystallization organization, make the ingot in the original segregation, porosity, porosity, slag compaction and welded, such as its organization become more closely, plasticity and mechanical properties of the metal. The mechanical properties of castings are lower than those of forgings of the same material. In addition, forging processing can ensure the continuity of the metal fiber organization, so that the fiber organization of the forgings and the shape of the forgings remain consistent, the metal streamline is complete, can ensure that the parts have good mechanical properties and long service life. The forgings produced by precision die forging, cold extrusion, warm extrusion and other processes are incomparable to castings Forgings are objects in which [TJC STEEL]metal is subjected to pressure and plastic deformation to form the desired shape or the appropriate compression force. This force is typically achieved by the use of a hammer or pressure. The forging process builds fine grain structures and improves the physical properties of the metal. In the practical use of parts, a correct design can make the particle flow in the direction of the main pressure. Casting is a metal molding object obtained by a variety of casting methods, that is, the smelted liquid metal, with pouring, injection, inhalation or other casting methods into the pre-prepared casting, after cooling by falling sand, cleaning and post-processing, obtained with a certain shape, size and performance of the object. Forging Operation "Giant heavy duty forging operation equipment" has been successfully developed and accepted by experts, filling the gap in the field of large forging manipulator technology equipment in China. This project belongs to the[TJC STEEL] national 863 Program advanced manufacturing subject, undertaken by China First Heavy Machinery Co., LTD. Through hard work, it has successfully developed the first 4000KNM forging manipulator in China, and has completely independent intellectual property rights. The 4000KNM forging manipulator has been put into production of large forgings after a successful thermal test, and has completed the precision forging of 11 types of more than 30 kinds of forgings. In the field of large forging manipulator technology, China has been monopolized by foreign countries for a long time, [TJC STEEL]and is in urgent need of large heavy duty forging equipment with independent intellectual property rights. The successful development of 4000KNM forging manipulator will greatly improve the manufacturing quality and environmental protection of large forging products in China, and can significantly reduce the cost and shorten the cycle. It is an important symbol of the technical transformation and upgrading of large forging capacity in China's large casting and forging industry, and will play an important role in nuclear power, shipbuilding, aerospace and other fields in the future. Risk Factors Risk factors and main reasons of forging production I. In forging production, traumatic accidents are prone to occur, which can be divided into three kinds according to their causes: First, mechanical injury -- [TJC STEEL]directly caused by the machine, tool or workpiece scratch, bruise; Second, burns; Third, electrical contact injury. Two, from the point of view of safety and technical labor protection, the characteristics of the forging workshop are: 1. Forging production is carried out in the state of hot metal (such as low carbon steel forging temperature range between 1250~750℃), because of a lot of manual labor, a little careless may occur burns. 2. The heating furnace in the forging shop and the hot ingot, blanks and forgings constantly emit large amounts of radiant heat (forgings still have a very high temperature at the end of forging), and the workers are often harmed by thermal radiation. 3. The smoke and dust from the heating furnaces of the forging workshop discharged into the air of the workshop during [TJC STEEL]the combustion process, which not only affects the health, but also reduces the visibility of the workshop (for the heating furnaces burning solid fuel, the situation is more serious), thus may also cause industrial accidents. 4. The equipment used in forging production, such as air hammer, steam hammer, friction press, etc., work out of the impact force. When the equipment is under the impact load, it is easy to be damaged suddenly (such as the sudden break of the piston rod of the forging hammer), and cause serious injury accidents. Press (such as hydraulic press, crank hot die forging press, flat forging press, fine press) shearing machine, in the work, although the impact is small, but the sudden damage of equipment and other situations also happen, the operator is often caught off guard, may also lead to industrial accidents. 5. Forging equipment in the work of the force is very large, such as crank press, tensile forging press and hydraulic press[TJC STEEL] such forging equipment, their working conditions are more stable, but its working parts of the force is very large, such as China has been manufactured and used 12000T forging hydraulic press. Is the common 100~ 150T press, the force is enough. If the mold is installed or operated incorrectly, most of the force is not on the workpiece, but on the mold, tool, or parts of the equipment itself. In this way, some errors in installation and adjustment or improper[TJC STEEL] tool operation may cause damage to parts and other serious equipment or personal accidents. 6. There is a wide variety of tools and auxiliary tools for forging, especially hand and free forging tools, clamps, etc., which are kept together at the work place. In the work, the replacement of tools is very frequent, and the storage is often messy, which inevitably increases the difficulty of checking these tools. When a certain tool is needed in forging and often can not be found quickly, sometimes the use of similar tools will "make do", which often leads to industrial accidents. 7. Because of the noise and vibration of the equipment in the forging workshop, the working place is extremely noisy, which affects people's hearing and nervous system and distracts their attention, thus increasing the possibility of accidents. Analysis of Causes of Work-Related Accidents in Forging Workshops 1. Areas requiring [TJC STEEL]protection and equipment lack protection and safety devices. 2. Inadequate or unused protection on equipment. 3. The production equipment itself is defective or defective. 4. Damaged equipment or tools and improper working conditions. 5. The forging die and anvil are defective. 6. Confusion in workplace organization and management. 7. Improper operation of process and auxiliary work of repair. 8. Personal protective equipment such as protective glasses are defective, work clothes and work shoes do not meet working conditions. 9. When several people work together on an assignment, they don't coordinate well with each other. 10. Lack of technical education and safety knowledge leads to incorrect procedures and methods. Matters Needing Attention The Forging Process Should be Noted 1. The forging process includes cutting the material to the required size, heating, forging, heat treatment, cleaning and inspection. In small hand forging, all these operations are carried out by a number of hands and hands in a small space. Exposure to the same hazardous environment and [TJC STEEL]occupational hazards; In a large forging shop, the harm varies with the job position. Working conditions Although working conditions vary with different forging forms, they have certain common characteristics: moderate intensity of physical labor, dry and hot microclimate environment, noise and vibration, air pollution by smoke. 2. Workers are exposed to high temperature air and heat radiation at the same time, resulting in the accumulation of heat in the body. Heat combined with metabolic heat will cause heat dissipation disorders and pathological changes. The amount of perspiration for an 8-hour labor will vary depending on the low-gas environment, physical exertion, and thermal fitness generally between 1.5 and 5 liters or more. In a small forging shop or far from the heat source, the Behard heat stress index is usually 55~95. However, in large forging workshops, the working point near the heating furnace or drop hammer machine may be as high as 150~190. Salt deficiency and heat cramps. [TJC STEEL] In the cold season, exposure to microclimate changes may promote adaptation to some extent, but rapid and too frequent changes may pose health hazards. Air pollution: The air in the workplace may contain soot, carbon monoxide, carbon dioxide, sulfur dioxide, or acrolein, depending on the type of furnace fuel and impurities, combustion efficiency, airflow and ventilation. Noise and vibration: The TYPE forging hammer will inevitably produce low frequency noise and vibration, but may also have certain high frequency components, and its sound pressure level is between 95 and 115 db. Exposure of workers to forging vibrations may cause temperamental and functional disorders that reduce work ability and affect safety. The Level of Analysis China's forging industry is developed on the basis of introducing, digesting and absorbing foreign technology. After years of [TJC STEEL]technological development and transformation, the technological level of leading enterprises in the industry has been greatly improved, including process design, forging technology, heat treatment technology, machining technology, product testing and other aspects. (1) Process design Advanced manufacturers generally use computer simulation technology, computer aided process design and virtual technology to improve the process design level and product manufacturing capacity. DATAFOR, GEMARC/AUTOFORGE, DEFORM, LARSTRAN/SHAPE and THERMOCAL were introduced and applied to realize the process control of computer design and hot working. (2) Forging technology Most of the hydraulic presses of 40MN and above are equipped with 100-400t. M main forging manipulator and 20-40t. M auxiliary manipulator. A considerable number of manipulators are controlled by computer to realize the comprehensive control of forging process, so that the forging accuracy can be controlled within ±3mm. (3) Heat treatment technology The key point is to improve product quality, improve heat treatment efficiency, save energy and protect environment. Such as the use of computer control heating furnace and heat treatment furnace heating process, control burner to achieve automatic regulation of combustion, furnace temperature adjustment, automatic ignition and heating parameters management; Waste heat utilization, heat treatment furnace equipped with regenerative combustion chamber, etc. The polymer quenching oil [TJC STEEL]tank with low pollution capacity and effective cooling control is adopted. Various water-based quenching media gradually replace the traditional quenching oil. (4) Machining technology The proportion of CNC machine tools in the industry has gradually increased, some enterprises in the industry have processing centers, according to different types of products equipped with proprietary processing machinery, such as five-axis processing centers, blade processing machines, roller mills, roller lathes and so on. (5) Quality assurance measures Some domestic enterprises have been equipped with the latest testing instruments and testing technology, the use of computer control data processing of modern automatic ultrasonic testing system, using a variety of special automatic ultrasonic testing system, to complete the certification of various [TJC STEEL]quality systems. The key production technology of high speed and heavy duty gear forgings has been continuously conquered and industrialization has been realized on this basis. On the basis of introducing advanced production technology and key equipment from abroad, China has been able to design and manufacture production equipment for high-speed and heavy-duty gear forgings by itself, which has approached the international advanced level. The improvement of technology and equipment level has strongly promoted the development of domestic forging industry. The Importance Forging production is one of the main processing methods to provide the blank of mechanical parts in the machinery manufacturing industry. Through forging, not only can get the shape of mechanical parts, but also can improve the internal structure of metal, improve the mechanical and physical properties of metal. Generally, the important mechanical parts with high stress and high requirements are made by forging production method. Such as turbine generator shaft, rotor, impeller, blade, protection ring, large hydraulic press column, high pressure cylinder, rolling mill roll, internal [TJC STEEL]combustion engine crankshaft, connecting rod, gear, bearing, as well as national defense industry artillery and other important parts, are produced by forging. [7] Therefore, forging production is widely used in metallurgy, mining, automobile, tractor, harvesting machinery, petroleum, chemical industry, aviation, aerospace, weapons and other industrial sectors, is in daily life, forging production also has an important position. In a sense, the annual output of forgings, the proportion of die forgings in the total output of forgings, the size and ownership [TJC STEEL]of forging equipment and other indicators, to a certain extent, reflect the industrial level of a country. Research And Development Of Free Cutting High Conductivity Tellurium Copper Alloy- TJC STEEL.10/12/2021
Tellurium copper is a tellurium bronze material, tellurium and copper alloy, tellurium copper containing 0.4-0.7% tellurium has good machining performance; Copper telluride containing 50% tellurium and 50% copper is used as an intermediate alloy. American ASTM standard C14500, is the United States according to its industrial development requirements in the 1960s successfully developed a high conductivity free cutting copper alloy material, to fill the gap of copper alloy precision processing materials. Tellurium copper[TJC STEEL] alloy material has both good free cutting performance and excellent electrical and thermal conductivity, as well as corrosion resistance and electric ablation resistance. It has good cold and hot processing performance, and can be forged, cast, extruded and drawn, and molded by punching. Products can be processed into plate, sheet, bar, wire, pipe and other profiles and a variety of profiles.
Properties Classification Of Tellurium Copper Alloys (1) high conductivity tellurium copper base alloy High conductivity tellurium copper alloys are usually denoted by DT. Tellurium copper alloy and silver copper have excellent electrical and thermal conductivity, in addition to corrosion resistance, excellent arc performance. Tellurium copper alloy materials of excellent comprehensive performance meet the European Union and our country in recent years, respectively in the about banning the use of certain hazardous substances in electrical and electronic equipment directive and the electronic information product pollution control management measures "such as stipulated in the law banned [TJC STEEL]in electronic electrical equipment used in the newly introduced contain lead, mercury, hexavalent chromium, polybrominated benzene ether and polybrominated biphenyl and other harmful substances Customs requirements. Tellurium copper, however, has its own advantages: it has good hot and cold working performance, and its chip performance is better than silver copper, and can even replace lead brass. The main excellent properties are introduced: 1) it has high conductivity. Tellurium copper alloy is very high compared with copper, than the same performance of red copper is more than 10%-13%, and more than silver copper 10%-15%, such tellurium copper alloy conductivity 94% to 98%; 2) With high thermal conductivity. 22% more than pure silver, 28% more than red copper; 3) Good electric arc resistance. Under the condition of high conductivity, the strength of tellurium alloy can be improved by adjusting the processing conditions, so as to obtain high strength and high conductivity tellurium alloy. DT tellurium copper alloy material with its excellent performance, is widely used in manufacturing electronics, home appliances, transportation, electrical parts, in the field of high conductivity, high thermal conductivity and other fields has a great role, in the future development can even be used to replace silver copper, in many industries have a great [TJC STEEL]space for development, has a commercial prospect. (2) High Strength Magnesium Telluride Copper Base Alloy The code name of high strength magnesium tellurium copper alloy is generally expressed by MDT. This kind of alloy is a kind of high performance copper alloy with high conductivity, excellent arc resistance and good mechanical properties. It is widely used in the relevant parts of high-speed railway network. This kind of product has the following characteristics: 1) good physical performance, good collocation between each other; [TJC STEEL] 2) Excellent electric arc resistance. This kind of alloy is mainly concentrated in German enterprises, and is widely used in connectors, commutators and other electrical industries. And our country is mainly in the development test stage, China railway Institute and so on have applied for relevant patents. In other countries, a small number of such alloys are produced, mainly in developed countries. (3) Free Cutting Phosphorus Tellurium Copper Base Alloy The designation of high strength magnesium tellurium copper alloy is generally indicated by PDT. This kind of alloy is widely used in chemical industry, machinery, welding and other manufacturing industries by virtue of its excellent cutting performance, electric arc resistance, corrosion resistance and conductivity, and high productivity [TJC STEEL]of manufacturing parts, low cost performance. And because of its good cutting performance, it can be used to make a variety of cutting device cutting nozzle, welding head, battery electrode and other aspects, and this kind of alloy non-toxic can also be used to make life supplies, such as utensils, etc.. C14500 tellurium copper alloy is a new alloy material with 0.40-0.70% tellurium and 0.004-0.012% phosphorus in copper. The bar made of it has excellent cutting performance. It can be used for high-speed cutting on the automatic lathe, and the cutting is not filamentous. It has been widely used in Europe, America, Japan and other [TJC STEEL]developed countries, mainly used for: high conductivity, high conductivity, corrosion resistant precision electronic and electrical components, advanced mechanical and electrical parts, casting and thread cutting parts, plumbing fittings, electrical contact parts, automobile parts, welding and cutting advanced nozzle, motor and switch parts, etc. Can be made into round bar, hexagonal bar, special-shaped bar external supply. High-conductivity tellurium copper alloys used in electrical contact materials are mostly produced by companies in the United States, Europe, Japan and South Korea. Through the relevant analysis of the shoe copper alloy market, we can clearly recognize that tellurium copper alloy has superior performance, its wide application prospect and potential market has been widely recognized. But at the same time, the market [TJC STEEL]feedback is high processing costs, the main alloy component tellurium market is high and the material is strategic, so only a part of the high precision products used in tellurium. The development of tellurium copper alloy rod has just started in China, luoyang, Sichuan, Shenyang, Guangdong, Zhejiang and other places have started trial production, market potential is great. Alloy product testing program (1) Casting Process Parameters In order to explore the casting process and find out the excellent process parameters, two different crystallizers with copper inner sleeve and copper and graphite inner sleeve were used in the industrial test, and two kinds of water pressure and casting speed were used to compare the performance of the ingot, so as to determine the best [TJC STEEL]process parameters. In addition, in the test process, in order to reduce the cost and minimize the accumulation of materials, we first get smelting experience in the medium frequency furnace, and then use the power frequency induction furnace for production. In the trial production of the power frequency induction furnace, we use the way of half furnace melting and single casting. (2) Extrusion And Drawing Process Parameters The mechanical properties of tellurium copper alloy rod is the second difficulty in the research and development work. The way to solve this problem is to optimize the combination of extrusion and drawing technology, in order to meet the performance requirements without annealing, considering the reasonable combination [TJC STEEL]of performance requirements and cost. In order to improve the surface quality of the product, water seal extrusion is used when extrusion, and the ingot cast by iron mold must be turned and milling before extrusion. In order to explore and optimize the extrusion process, two extrusion schemes are formulated, respectively extrude A ф 31mm, ф 35mm bar blank, and then stretch, the mechanical properties of the finished products are tested. The extruded products should be pickled before stretching, and the elongation coefficient of each stretch time should be calculated respectively to make the processing rate of each pass more uniform. [TJC STEEL]Material, hardness, required mold and equipment performance should be considered in the design of drawing passes to ensure that each pass can be successfully completed. |
TJC Steel News Center
Company News, Market News and Order Cases About TJC Steel. Archives
May 2022
Categories |